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2.26

store an image with each of the following
display sizes:

(i) 1024 x 768,

(ii) 1280 x 10247

Derive the time to transmit an image with each
type of display assuming a bit rate of

(i) 56 kbps,

(ii} 1.5 Mbps.

With the aid of a diagram, explain how a
digital image produced by a scanner or digital
camera is captured and stored within the
memory of a computer.

With the aid of a diagram, explain how a color
image is captured within a camera or scanner
using each of the following methods:

(i) single image sensor,

(ii) a single image sensor with filters,

(iii) three separate image sensors. Include in
your explanations the terms “photosites”
and “CCDs” and the role of the readout
Tegister.

Section 2.5
2.27 With the aid of a diagram, explain the prin-

2.28

ciple of operation of a PCM speech codec.
Include in your diagram the operation of the
compressor in the encoder and the expander
in the decoder. Use for example purposes 5
bits per sample.

Identify the main features of the MIDI stan-
dard and its associated messages.

Section 2.6

2.29

2.30

With the aid of a diagram, explain the prin-
ciples of interlaced of scanning as used in most
TV broadcast applications. Include in your
explanation the meaning of the terms “field”,
“odd scan lines”, and “even scan lines”. Show
the number of scan lines per field with

(i) a525-line system and

(ii) a 625-line system. Why do computer

monitors not use interlaced scanning?

State and explain the three main properties of
a color source that the eye makes of. Hence

2.31

2.32

233

2.34

2.35

2.36

137

Exercises

explain the meaning of the terms “luminance”,
“chrominance”, and “color difference” and
how the magnitude of each primary color pre-
sent in the source is derived from these.

Why is the chrominance signal transmitted in
the form of two color different signals? Identify
the color difference signals associated with the
NTSC and PAL systems.

State the meaning of the term “composite video
signal” and, with the aid of a diagram, describe
how the two color difference signals are trans-
mitted within the same frequency band as that
used for the luminance signal.

Explain why, for digital TV transmission, the
three digitized signals used are the luminance
and two color difference signals rather than
the RGB signals. Why are a number of differ-
ent digitization formats used?

With the aid of diagrams, describe the follow-
ing digitization formats:

iy 4:2:2,
(i) 4:2:0,
(iii) SIF,

(iv) CIF,

(v QCIF,
(vi) SQCIF.

For each format, state the temporal resolution
and the sampling rate used for the luminance
and the two color difference signals. Give an
example application of each format.

Derive the bit rate that results from the digitiza-
tion of a 525-line and a 625-line system using
the 4:2:0 digitization format and interlaced
scanning. Hence derive the amount of memory
required to store a 2-hour movie / video.

Explain why modifications to the received
{broadcast) TV signal have to be made if
the signal is to be displayed in a window of a
computer monitor. Hence assuming the
SIF format, derive the spatial resolution
required with

(i} a525line and

(ii) a625line system.



Text and image compression

3.1 Introduction

In the previous chapter we described the way the different types of media
used in multimedia applications — text, fax, images, speech, audio, and video
— are represented in a digital form. We ierived the memory and bandwidth
requirements for each type and, as we concluded in Section 2.7, in most
cases, the bandwidths derived were greater than those that are available with
the communication networks over which the related services are provided. In.
addition, when using a public network in which call charges are based on the
duration of a call, considerable cost savings can be made if the volume of
information to be transmitted is reduced.

In almost all multimedia applications, therefore, a technique known as
compression is first applied to the source information prior to its transmis-
sion. This is done either to reduce the volume of information to be
transmitted — text, fax, and images - or to reduce the bandwidth that is
required for its transmission - speech, audio, and video. In this chapter we
shall consider a selection of the compression algorithms which are used with
text, fax, and images and, in Chapter 4, we shall describe a selection of the
compression algorithms that are used with audio and video.
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Compression principles

"o

Before we describe some of the compression algorithms in widespread use, it
will be helpful if we first build up an understanding of the principles on
which they are based. We shall discuss the under the headings:

_W source encoders and destination decoders,
_m lossless and lossy compression,

A entropy encoding,

M source encoding.

Source encoders and destination decoders

As have just indicated, prior to _g(alorlsmitﬂng the source information relating o
a particular multimedia application, a compregsion algorithm is applied to it.
This implies that in order for the destination %reproduce the original source
infofmation — or, in some instances, a nearly exact copy of it —a matching
decompression algorithm must be applied to it. The application of the com-
pression algorithm is the main function carried out by the source encoder and
the decompression algorithm is carried out by the destination decoder.

In applications which involve two computers communicating with each
other, the time required to perform the compression and decompression
algorithms is not always critical. So both algorithms are normally imple-
mented in software within the two computers. The general scheme is shown
in part (a) of Figure 3.1 and an example application which uses this
approach is the compression of text and/or image files. In other applications,
however, the time required to perform the compression and decompression
algorithms in software is not acceptable and instead the two algorithms must
be performed by special processors in separate units as shown in part (b) of
the figure. Example applications which use this approach are those which
involve speech, audio, and video.

Lossless and lossy compression

Compression algorithms can be classified as being either lossless or lossy. In
the case of a lossless compression algorithm the aim is to reduce the amount
of source information to be transmitted in such a way that, when the com-
pressed information is decompressed, there is no loss of information. Lossless
compression is said, therefore, to be reversible. An example application of
lossless compression is for the transfer over a network of a text file since, in
such applications, it is normally imperative that no part of the source infor-
mation is lost during either the compression or decompression operations.

In contrast, the aim of lossy compression algorithms, is normally not to
reproduce an exact copy of the source information after decompression but



140 | Chapter 3 Text and image compression
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Figure 3.1 Source encoder/destination decoder alternatives:
(a) software only; (h) special processors/hardware.

rather a version of it which is perceived by the recipient as a true copy. In gen-
eral, with such algorithms the higher the level of compression being applied
to the source information the more approximate the received version
becomes. Example applications of lossy compression are for the transfer of
digitized images and audio and video streams. In such cases, the sensitivity of
the human eye or ear is such that any fine details that may be missing from
the original source signal after decompression are not detectable.

Entropy encoding

Entropy encoding is lossless and independent of the type of information that
is being compressed. It is concerned solely with how the Wiforiation is repre-

. sented. We shall describe two examples which are in widespread use in

compression algorithms in order to illustrate the principles involved. In some
applications they are used separately while in others they are used together.

Run-length encoding

Typical applications of this type of encoding are when the source intormation
comprises long substrings of the same character or binary digit. Instead of
transmitting the source string in the form of independent codewords or bits,
it is transmitted in the form of a different set of codewords which indicate not
only the particular character or bit being transmitted but also an indication
of the number of characters/bits in the substring. Then, providing the desti-
nation knows the set of codewords being used, it simply interprets each

e e codeword received and outputs the appx;opriatg‘: number of characters or bits.
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For example, in an application that involves the transmission of long
strings of binary bits that comprise a limited mmmber of substrings, each sub-
string can be assigned a separate codeword. The total bit string is then
transmitted in the form of a string of codewords selected from the codeword
set. An example application which uses this technique is for the transmission
of the binary strings produced by the scanner in a facsimile machine. In
many instances — for example when scanning typed documents - the scanner
produces long substrings of either binary 0s or 1s. Instead of transmitting
these directly, they are sent in the form of a string of codewords, each indicat-
ing both the bit ~ 0 or 1 — and the number of bits in the substring. For
example, if the output of the scanner was:

000000011111111110000011... ey

'm )

c},"t v C,\‘("\'gb . - . .
<7 8% this could be represented as: 0,7 1,10 0,5 1.2 ... . Alternatively, since only the

. of, q
‘I“'”\ b E’Qf&th (' Wo binary digits 0 and 1 are involved, if we ensure the first substring always
\D ub,.“t comprises binary 0s, then the string could be represented as 7, 10,5,2 ... . To
send this in a digital form, the individual decimal digits would be sent in their

\Wk‘r e binary form and, assuming a fixed number of bits per codeword, the number
u‘\ _ r’(‘{":g\ of bits per codeword would be determined by the largest possible substring.
U”IP:M"\ *"U We shall describe an application that uses this approach in Section 3.4.3

when we describe the compression of digitized documents.

Statistical encoding

__—~Many applications use a set of codewords to transmit-the-seurce information.
00??'5 For example, as we described earlier in Section 2.3.1, a set of ASCII code-
Mo «P\r( words are often used for the transmission of strings of characters. Normally,
CD scll .,cﬂL‘ d\dﬁl}' all the codewords in the set comprise a fixed number of binary bits, for exam-
‘ ple 7 bits in the case of ASCIEAIn many applications, however, the_symbols -
and hence codewords — that are present in the source information do not
‘Ir 4% occur with the same frequency of occurrence; that is, with equal probability.
Ar d‘k ‘;)hr;“%f(‘ ; or example, in a string of text, the character A may occur more frequently
et than, say, the character P which occurs more frequently than the character Z,
and so on. Statistical encoding exploits this property by using a set of variable-
length codewords with the shortest codewords used to represent the most
frequently occurring symbols. -~
In practice, the use of variable-length codewords is not quite as straight-
forward as it first appears. Clearly, as with run-length encoding, the
destination must know the set of codewords being used by the source. With
variabledlength codewords, however, in geder for the decoding operation to
be carried out correctly, it is r@gy,@ﬂﬂﬁ_ﬂ?at a shorter codeword in
the set does not form the start of a longer codeword otherwise the decoder
will interpret the string on the wrong codeword boundaries. A codeword set
that avoids this happening is said to possess the prefix property and an exam-
ple of an encoding scheme that generates codewords thaf have this property
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—is the Huffman encoding algorithm which we shall describe in Section 3.3.1.
The theoretical minimum average number of bits that are required to

- [pl
n cwo' o l\ ﬂ’ . transmit a particular source stream is known as the entropy of the source and
l‘fﬂr:l ad - A t-« can be'computed usitig a formula attributed to Shannon:
¢ VLE speﬁm Er P(!'

L n
-z F Entropy, H=- Zi P.log, P,

EREOF? e =1

where n is the number of different symbols in the source stream and P, is the
probability of occurrence of symbol i. Hence the efficiency of a particular
encoding scheme is often computed as a ratio of the entropy of the source to
the average number of bits per codeword that are required with the scheme.
The latter is computed using the formula:

i: Ci/ E{ ¢ g et %\;’M\

- \ 0
i N)%:ﬂ} \N/Wd* Average number of bits per codeword = Z N, P,
1 A

% ko)

o

Example 3.1
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3.1 Continued

3.2.4 Source encoding

Xy Source encoding exploits a pa%cular property of the source information in
” order to produce an alternative form of representation that is either a com-

luce an aiernative 2o
ML’”‘W inr pressed version of the original form or is more amenable to the application
g of compiession. Again, we shall describe two examples in widespread use in
INPTess) 6 P P
rder to illustrate the principles involved. _
= e
J a.k ’ﬂfP Diff o . P { eras 1’5«1-13!.)
M for ifferential encoding i ffun tomp b I
\ Differential encoding is used extensively in applications where the amplitude S“_MI;
. | of a value or signal covers a large range but the difference in amplitude ¢
\WL \ L T between successive values/signals is relatively small. To exploit this property sovel]
M;Qw;m | t’n:;"“ of the source information, instead of using a set of relatively large codewords
L

=

&k i
(nm"'“ s T

ALY to represent the amplitude of each value/ signal, a set of smaller codewords
off i~ can be used each of which indicates only the difference in amplitude between i
the current value/signal being encoded and the immediately preceding
value/signal. For example, if the digitization of an analog signal requires, say,
12 bits to obtain the required dynamic range but the maximum difference in Oﬁ
amplitude between successive samples of the signal requires only 3 bits, then
by using only the difference values a saving of 75% on transmission band-
width can be obtained.

In practice, differential encoding can be either lossless or lossy and

' depends on the number of bits used to éncode the difference values. If the

| number of bits used is sufficient to cater for the maximum difference value

) Egrl_it_is_k:_sgk_'s_s_.'lf this is not the case, then on those occasions when the dif-
ference value exceeds the maximum number of bits being used, temporary
loss of information will result,

Transform encoding 6

As the name implies, transform encoding involves transforming the source
information from one form into another, the other form lending itself
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€

more readily to the application of compression. In general, there is no loss
of information associated with the transformation operation and this tech-
nique is used in a number of applications involving both images and video.
on_ For example, as we saw in Section 2.4.3, the digitization oF & confinuous-
% tone monochromatic image produces a two-dimensional matrix of pixel
« values each of which represents the level of gray in a particular position of
the image. As we go from one position in the matrix to the next, the magni-
P R tude of each pixel value may vary. Hence, as we scan across a set of pixel
locations, the rate of change in magnitude will vary from zero, if all the
)/ : pixel values remain the same, to a low rate of change if, say, one half is dif-
LAY ferent from the next half, through to a high rate of change if each pixel
PR SR magnitude changes from one location to the next. Some examples are

' shown in Figure 3.2(a).
The rate of change in magnitude as one traverses the matrix gives rise to
Ca G a term known as spatial frequency and, for any particular image, there will be
ore vV a mix of different spatial frequencies whose amplitudes are determined by
g L the related changes in magnitude of the pixels. This is true, of course, if we
_ *°¢ . scan the matrix in either the horizontal or the vertical direction and this, in
wo ( turn, gives rise to the terms horizontal and vertical frequency components of
,Trf, }‘O?‘qﬁ‘\ et I the image. In practice, the human eye is less sensitive to the higher spatial fre-
gt " quency components associated with an image than the lower frequency
T components. Moreover, if the amplitude of the higher frequency compo-
et nents falls below a certain amplitude threshold, they will not be detected by
I the eye. Hence in terms of compression, if we can transform the original spa-
e o tial form of representation into an equivalent representation involving spatial
e pdto frequency components, then we can more readily identify and eliminate
o b \ e F those higher frequency components which the €ye cannot detect thereby
reducing the volume of information to be transmitted without degrading the

Pﬂ)h perceived quality of the original image.

b The transformation of a two-dimensional matrix of pixel values into an

; - equivalent matrix of spatial frequency components can be carried out using a

wr M '"ff Lhroe mathematical technique known as the discrete cosine transform (DCT). The

"\? L b:f L i transformation operation itself is lossless - apart from some small rounding

Apey W\ TR errors in the mathematics — but, once the equivalent matrix of spatial fre-

quency components — known as coefficients — has been derived, then any

h _ .t frequency components in the matrix whose amplitude is less than a defined

\er/z ' o 4 Y threshold can be dropped. It is only at this point that the operation becomes

o aaf ol lossy. The basic principle behind the DCT is as shown in Figure 3.2(b) and we

A UV shall describe it in more detail in Section 3.4.5 when we discuss the topic of
wv‘ N b image compression.
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3.3 Text compression

As we saw in Section 2.3, the three different types of text — unformatted, for-

matted, and hypertext - are all represented as strings of characters selected

from a defined set. The strings comprise alphanumeric characters which are

interspersed with additional control characters. The different types of text

bnr\ use and interpret the latter in different ways. As we can deduce from this, any
)20% MWW“" compression algorithm associated with text must be lossless since the loss of
just a single character could modify the meaning of a complete string. In gen-

I g eral, therefore, we are restricted to the use of entropy encoding and, in
eI 5 e practice, statistical encoding methods.

(«S'h"h Hua? ) Essentially, there are two types of statistical encoding methods which

/ are used with text: one which uses single characters as the basis of deriving

/ an optimum set of codewords and the other which uses variable-length

'L%C/PU Hf [PE strings of characters. Two examples of the former are the Huffman and

pe i arithmetic coding algorithims and an example of the latter is the Lempel-Ziv
9 _,U,: Siole uhes : JC (LZ) algorithm. We shall describe the principles of each of these algorithms
L DP‘” it & in this section.

Cade wmLd There are two types of coding used for text. The first is intended for

- A : applications in which the text to be compressed has known characteristics in

L/F) i le rdie terms of the characters used and their relative frequencies of occurrence.

B hi(‘? ("{cM)ﬁ‘L’bi Using this information, instead of using fixed-length codewords, an optimum

Cv (L,"L- ) set of variabledength codewords is derived with the shortest codewords used

- to represent the most frequently occurring characters. The resulting set of

it codewords are then used for all subsequent transfers involving this particular
"'J e B et type of text. This approach is known as static coding.

—

- Tork b ke it - The second type is intended for more general applications in which the
|D v M” type of text being transferred may vary from one transfer to another. In this
S e pakdlioe M case the optimum set of codewords is also likely to vary from one transfer to
GJt 0 Lurrdr it another. To allow for this possibility, the codeword set that is used to transfer
. a particular text string is derived as the transfer takes place. This is done by
et atlc ity p“’“ building up knowledge of both the characters that are present in the text and
Sehend A st d their relative frequency of occurrence dynamically as the characters are being
transmitted. Hence the codewords used change as a transfer takes place, but
) 4 in such a way that the receiver is able io dynamically compute the same set of
g wediat Lorts oty COdewords that are being used at each point during a transfer. This approach
L m?" sl (VP > is known @s dynamic or adaptive coding and, since each uses a different algo-
rithm to derive the codeword set, we shall describe each separately.

;\.

2) i i
; 3.3.1 Static Huffman coding
/Wr 6' +ay - busp
Moo ol & Pt !,afu wi With static Huffman coding the character string to be transmitted is first ana-
) }Q’;} e b lyzed and the character types and their relative frequency determined. The
sl {" coding operation involves creating an unbalanced tree with some branches
("

& g WG] €0 -hg ¢! t{ (and hence codewords, in practice) shorter than others The degree of imbal-
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ance is a function of the relative frequency of occurrence of the characters:
the larger the spread, the more unbalanced is the tree. The resulting tree is
known as the Huffman code tree.

A Huffman (code) tree is a binary tree with branches assigned the value 0
or 1. The base of the tree, normally the geometric top in practice, is known as
the root node and the point at which a branch divides, a branch node. The
termination point of a branch is known as a leaf node to which the symbols
being encoded are assigned. An example of a Huffman code tree is shown in
Figure 3.3(a). This corresponds to the string of characters AAAABBCD.

As each branch divides, a binary vatue of 0 or 1 is assigned to each new
branch: a binary 0 for the left branch and a binary 1 for the right branch.
The codewords used for each character (shown in the leaf nodes) are deter-
mined by tracing the path from the root node out to each leaf and forming a

{a)

RN
y\
BN IN=A
Q 1
, BN 1 IN=B RN = roct node
BN = branch node
IN=D IN=C IN = lect node
A=l
B=0C1
C=001
D=000
¢ (B
2 pd— > Al ——> A4} aa=n
o epal} L > 40 BZ=(Nio] =01
a1 210 Cl=(1010) = 001
51 10l —f D1 ={0{01(0) o= 000
A A
Frequency of 8 Sicrt;ng Siﬂffriﬂg
Q a
occurmence y\ leaf node oot node
A Ad
o] 1
2 B2
L
y\ f)\(‘?.V"ZUA\T
DY Ci -

Weight order = D1 C1 2 B2 4 Ad B v

Figure 3.3 Huffman code tree construction: (a) final tree with codes;
(h) tree derivation.
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string of the binary values associated with each branch traced. We can deduce
from the set of codes associated with this tree that it would take

4x1+2x2+1x3+1x3=14hbits

to transmit the complete string AAAABBCD,

To illustrate how the Huffman code tree in Figure 3.3(a) is determined,
we must add information concerning the frequency of occurrence of each
character. Figure 3.3(b) shows the characters listed in a column in decreasing
(weight) order. We derive the tree as follows.

The first two leaf nodes at the base of the list - C1 and DI - are assigned
to the (1) and (0) branches respectively of a branch node. The two leaf nodes
are then replaced by a branch node whose weight is the sum of the weights of
the two leaf nodes; that is, two. A new column is then formed containing the
new branch node combined with the remaining nodes from the first column,
again arranged in their correct weight order. This procedure is repeated until
only two nodes remain.

To derive the resulting codewords for each character, we start with the
character in the first column and then proceed to list the branch numbers - 0
or 1 — as they are encountered. Thus for character A the first (and only)
branch number is (1) in the last column while for C the first is (1) then (0) at
branch node 2 and finally (0} at branch node 4. The actual codewords, how-
ever, start at the root and not the leaf node hence they are the reverse of
these bit sequences. The Huffiman tree can then be readily constructed from
the set of codewords.

We check that this is the optimum tree — and hence set of codewords - by
listing the resulting weights of all the leaf and branch nodes in the tree start-
ing with the smallest weight and proceeding from left to right and from
bottom to top. The codewords are optimum if the resulting list increments in
weight order.

Example 3.2
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3.2 Continued
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(a)

AQ25—» AQ25— AQ.25—» AQ.25 0.28 0.47 0.53 1%
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EQ.055 0i11l—= 011 (1) D014 Q)
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Figure 3.4 Huffman encoding example: (a) codeword generation; (b} Huffman code tree.
¥
a \Sﬂ& ™ Since each character in its encoded form has a variable number of bits,
= \sxrf“}’ ‘q‘p‘( the received bitstream must be interpreted (decoded) in a bitoriented way
. rather than on fixed 7/8 bit boundaries. Because of the order in which bits
are assigned during the encoding procedure, however, Huffman codewords
have the unique property that a shorter codeword will never form the
start of a longer codeword. If, say, 011 is a valid codeword, then there
- cannot be any longer codewords starting with this sequence. We can con-
t\,\ggd firm this by considering the codes derived in the earlier examples in
Figures 3.3 and 3.4.
B\E’ This property, known as the prefix property, means that the received
byl
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bit until each valid codeword is found. A flowchart of a suitable decoding
algorithm is given in Figure 3.5(a). The algorithm assumes a table of code-
words is available at the receiver and this also holds the corresponding
ASCII codeword. The received bit stream is held in the variable BIT-
STREAM and the variable CODEWORD is used to hold the bits in each
codeword while it is being constructed. As we can deduce from the flow-
chart, once a codeword is identified the corresponding ASCII codeword is
written into the variable RECEIVE_BUFFER. The procedure repeats until
all the bits in the received string have been processed. An example of a
decoded string corresponding to the codeword set derived in Figure 3.3 is
given in Figure 3.5(b).

(@)

(b} Received bitsteam: 10110000011 =~ —— Time
Codewords; DRI e
A=l 5 : : | k
B0 L, b —>1000001 1000010 1000001 1000100 ----
0=000 A B kal o

A

Figure 3.5 Decoding of a received hitstream assuming codewords
derived in Figure 3.3: (a) decoding algorithm; (h) example.
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3.3.2

As the Huffman code tree {and hence codewords) varies for different
sets of characters being transmitted, for the receiver to perform the decoding
operation it must know the codewords relating to the data being transmitted.
This can be done in two ways. Either the codewords relating to the next set of
data are sent before the data is transmitted, or the receiver knows in advance
what codewords are being used.

The first approach leads to a form of adaptive compression since the
codewords can be changed to suit the type of data being transmitted. The dis-
advantage is the overhead of having to send the new set of codewords (and
corresponding characters) whenever a new type of data is to be sent. An alter-
native is for the receiver to have one or more different sets of codewords and
fer the sender to indicate to the receiver (through an agreed message) which
codeword set to use for the next set of data,

For example, since 2 common requirement is to send text files generated
by a word processor {(and hence containing normal textual information),
detailed statistical analyses have been carried out into the frequency of occur-
rence of the characters in the English alphabet in normal written text. This
information has been used to construct the Huffman code tree for the alpha-
bet. If this type of data is being sent, the transmitter and receiver
automatically use this set of codewords. Other common data sets have been
analyzed in a similar way and, for further examples, you may wish to consult
the bibliography at the end of the book.

Dynamic Huffman coding

The basic Huffman coding method requires both the transmitter and the
receiver to know the table of codewords relating to the data being transmit-
ted. With dynamic Huffman coding, however, the transmitter (encoder) and
receiver (decoder) build the Huffman tree — and hence codeword table —
dynamically as the characters are being transmitted/received.

With this method, if the character to be transmitted is currently present
in the tree its codeword is determined and sent in the normal way. If the
character is not present — that is, it is its first occurrence — the character is
transmitted in its uncompressed form. The encoder updates its Huffman tree
either by incrementing the frequency of occurrence of the wansmitted char-
acter or by introducing the new character into the tree,

Each transmitted codeword is encoded in such a way that the receiver,
in addition to being able to determine the character that is received, can
also carry out the same modifications to its own copy of the tree so that it
can interpret the next codeword received according to the new updated
tree structure.

To describe the details of the method, assume that the data (file) to be
transmitted starts with the following character string:

This is simple ...
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The steps taken by the transmitter are shown in Figure 3.6(a—g).

Both transmitter and receiver start with a tree that comprises the root
node and a single empty leaf node - a leaf node with a zero frequency of
occurrence — assigned to its 0-branch. There is always just one empty leaf
node in the tree and its position — and codeword - varies as the tree is being
constructed. It is represented in Figure 3.6 as 0.

Input sking = This o is . simple « = Space character
Inita 1 ized tree.
0/‘
: e 20} = empty 1eaf
Characier  Gutput Updoted tree Tist
{a) T T RN
=0 T 2071 4
=+
(b} R b 0/\1!
1 T1 eDhl 1T1 I'd
o
h.-———eO [
{e} 00 " o
2 Tl
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1 Rl 2Qil 1Th12TI1 X
0 1
e i
oL
Tl 2
0 i
il
| i edil 1h1TI2 4
o
' el il
=
id) S 1005 R U
T 3
oAl
2 b1 eQsi 1l 2R THD X
0 I
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o] 1
2
. 0 p 01 11171 h1 227
N
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20 =000

Figure 3.6 Dynamic Huffman encoding algorithm.
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The encoder then starts by reading the first character T and, since the
tree is empty, it sends this in its uncompressed — say, ASCII ~ form. This is
shown as “T” in the figure. The character is then assigned to the 1-branch of
the root and, since this is the first occurrence of this character, it is shown as
T1 in the tree. On reception, since the decoder’s tree is also empty, it inter-
prets the received bit string as an uncompressed character and proceeds to
assign the character to its tree in the same way (Figure 3.6(a)).

For each subsequent character, the encoder first checks whether the
character is already present in the tree. If it is, then the encoder sends the
current codeword for the character in the normal way, the codeword being
determined by the position of the character in the tree. If it is not present,
then the encoder sends the current codeword for the empty leaf - again
determined by its position in the tree — followed by the uncompressed code-
word for the character. Since the decoder has the same tree as the encoder, it
can readily deduce from the received bit string whether it is the current code-
word of a {(compressed) character or that of the empty leaf followed by the
character in its uncompressed form.

The encoder and decoder proceed to update their copy of the tree based
on: the last character that has been transmitted/ received. If it is a new charac-
ter, the existing empty leaf node in the tree is replaced with a new branch
node, the empty leaf being assigned to the O-branch and the character to the
1-branch (Figure 3.6(b)).

If the character is already present in the tree, then the frequency of
occurrence of the leaf node is incremented by unity. On doing this, the posi-
tion of the leaf node may not now be in the optimum position in the tree.
Hence each time the tree is updated - either by adding a new character or by
incrementing the frequency of occurrence of an existing character — both the
encoder and decoder check, and if necessary modify, the current position of
all the characters in the tree.

To ensure that both the encoder and decoder do this in a consistent way,
they first list the weights of the leaf and branch nodes in the updated tree
from left to right and from bottom to top starting at the empty leaf. If they
are all in weight order, all is well and the tree is left unchanged. If there is a
node out of order, the structure of the tree is medified by exchanging the
position of this node with the other node in the tree — together with its
branch and leaf nodes — to produce an incremented weight order. The first
occurrence is in Figure 3.6(c) and other exampies are in parts (d)-(g).

The steps followed when a character to be transmitted has previously
been sent are shown in Figure 3.6(f). At this point, the character to be trans-
mitted is i and when the encoder searches the tree, it determines that i is
already present and transmits its existing codeword — 01. The encoder then
increments the character’s weight — frequency of occurrence - by unity to i2
and updates the position of the modified node as before. Another example is
shown in Figure 3.6(g) when the character s is to be transmitted.
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333

We can deduce from this example that the savings in transmission band-
width start only when characters begin to repeat themselves. In practice, the
savings with text files can be significant, and dynamic Huffman coding is now
used in a number of communication applications that involve the transmis-
sion of text.

Arithmetic coding

As we can deduce from Examples 3.1 and 3.2, Huffman coding achieves the
Shannon value only if the character/symbol probabilities are all integer
powers of 2. Clearly, in many instances, this is not the case and hence the set
of codewords produced are rarely optimum. In contrast, the codewords pro-
duced using arithmetic coding always achieve the Shannon value. Arithmetic
coding, however, is more complicated than Huffman coding and so we shall
limit our discussion of it to the basic static coding mode of operation,

To illustrate how the coding operation takes place, consider the transmis-
sion of a message comprising a string of characters with probabilities of:

e=03 n=03 t=02 w=01, .=01

At the end of each character string making up a message, a known char-
acter is sent which, in this example, is a period . . When this is decoded at the
receiving side, the decoder interprets this as the end of the string/message.

Unlike Huffman coding which was a separate codeword for each charac-
ter, arithmetic coding yields a single codeword for each encoded string of
characters. The first step is to divide the numeric range from 0 to 1 into a
number of different characters present in the message te be sent — including
the termination character — and the size of each segment by the probability
of the related character. Hence the assignments for our set of five characters
may be as shown in Figure 3.7(a).

As we can see, since there are only five different characters, there are five
segments, the width of each segment being determined by the probability of
the related character. For example, the character e has a probability of 0.3
and hence is assigned the range from 0.0 to 0.3, the character n — which also
has a probability of (1.3 — the range from 0.3 to 0.6, and so on. Note, however,
that an assignment in the range, say, 0.8 to 0.9, means that the probability in
the cumulative range is from 0.8 to 0.8999... . Once this has been done, we
are ready to start the encoding process. An example is shown in Figure 3.7(b)
and, in this example, we assume the character string/message to be encoded
is the single word went. .

The first character to be encoded w'is in the range 0.8 to 0.9. Hence, as
we shall see, the final (numeric) codeword is a number in the range 0.8 to
0.8999 _.. since each subsequent character in the string subdivides the range
0.8 to 0.9 into progressively smaller segments each determined by the proba-
bilities of the characters in the string.
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Example character set and their probabilities:

{b)

Character
set

0.3 7

e=03n=031t=02w=01.=01

03 0.0 08 09 | <— Cuymulative

O_

\ i ! | | probabilities

0.83 1 0818 T 08162 T
0.827 o171 1+ 0.81602 -1+
w w

Q.824 08162 1 081584 +
t t

0818 4 08144 — 081548 T
h n

0.809 0811/ + 081494 1
e e

c.8 - 0809 — 08144 —

Encoded version of the character sting went, is o single codeward in the range 0.816 02 < codeword < 0.8162

Figure 3.7 Arithmetic coding principles: (a} example character set and their range
assignments; (b) encoding of the string went..

As we can see in the example, since w is the first character in the string,
the range 0.8 to 0.9 is itself subdivided into five further segments, the
width of each segment again determined by the probabilities of the five char-
acters. Hence the segment for the character e, for example, is from 0.8 to
0.83 (0.8 + 0.3 x 0.1), the character n from 0.83 to 0.86 (0.83 + 0.3 x0.1), and
$0 o,

The next character in the string is e and hence its range (0.8 to 0.83) is
again subdivided into five segments. With the new assignments, therefore, the
character e has a range from 0.8 to 0.809 (0.8 + 0.3 x 0.03), the character n
from 0.809 to 0.818 (0.809 + 0.3 x 0.03), and so on. This procedure continues
until the termination character . is encoded. At this point, the segment range
of . is from 0.816 02 to 0.8162 and hence the codeword for the complete
string is any number within the range:

0.81602 < codeword > 0.8162
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In the static mode, the decoder knows the set of characters that are pre-
mz‘nlsent in the encoded messages it Teceives as well as the @h each
Yl«;f‘ ' character has been assigned and its related range. Hence with this as a start
ot oo point, the decoder can follow the same procedure as that followed by the
(h 4"z encoder to determine the character string relating to each received code-
‘ . word. For example, if the received codeword is, say, 0.8161, then the decoder
can readily determine from this that the first character is w since it is the only
s character within the range 0.8 to 0.9. It then expands this interval as before
and determines that the second character must be e since 0.8161 is within the
N range 0.8 to 0.83. This procedure then repeats until it decodes the known ter-
AL o mination character . at which point it has recreated the, say, ASCII string
W PR AV :3 ¥ 4 relating to went. and passes this on for processing.

P As we can deduce from this simple example, the number of decimal
Ll e digits in the final codeword increases linearly with the number of characters
in the string to be encoded. Hence the maximum number of characters in a
6 string is determined by the precision with which floating-point numbers are
}%“ represented in the source and destination computers. As a result, a complete
message may be first fragmented into multiple smaller strings. Each string is
then encoded separately and the resulting set of codewords sent as a block of
(binary) floating-point numbers each in a known format. Alternatively,
binary arithmetic coding can be used but, as we indicated earlier, this is out-
side the scope of the book. Further details relating to arithmetic coding can
be found in the bibliography for this chapter at the end of the book.
3.3.4 Lempel-Ziv coding
4 B
w'r"t;;h\\% The Lempel-Ziv (LZ) compression algorithm, instead of using single charac-
r \ o ters as the basis of the coding operation, uses strings of characters. For
" "\(_ b 7 w5 example, for the compression of text, a table containing all the possible char-
2 fn poa O \ W ?_,q, acter strings — for example words ~ that occur in the text to be transferred is
et et &M w  held by both the encoder and decoder. As each word occurs in the text,
e ! i w“"é“:o \,.,bl‘ instead of sending the word as a set of individual - say, ASCII - codewords,
R 2 (@C the encoder sends only the index of where the word is stored in the table
EaR P v and, on receipt of each index, the decoder uses this to access the correspond-
OW“\'\ Vtw ing word/string of characters from the table and proceeds to reconstruct the
S o textinto its original form. Thus the table is used as a dictionary and the LZ
\ . " .y%“\.&)\w algorithm is known as a dictionary-based compressicn algorithm.
BEW %M wd*" . Most word-processing packages have a dictionary associated with them
o w&% N;_\'& M’* - which is used for both spell checking and for the compression of text.
‘N;\ b SWM ¥ Typically, they contain in the region of 25000 words and hence 15 bits -
X ”‘\ 3”«-)) S wy&c which has 32 768 combinations - are required to encode the index. To send .
,/L:“f/ v, the word “multimedia” with such a dictionary would require just 15 bits
’ < wm\} instead of 70 bits with 7-bit ASCII codewords. This results in a compression
v A ratio of 4.7:1. Clearly, shorter words will have a lower compression ratio and
’f&t.“}" - N L9, longer words a higher ratio. » : ,L) _\“{J» S_‘?;_ >
’ e o] e oowﬁ NG » ;3,"”\0@\,\0“ S
t{q@ﬂ—)\’ R A Uﬁ,gc‘ ' o ~5° v \v':‘h 3 },(F/ L sf‘
b . H ~ \9&‘.‘\‘-' R \‘é . *" P s R r;‘\ R
Nt A I Y



3.3 Text compression I 159
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As with the other static coding methods, the basic requirement with the
LZ algorithm is that a copy of the dictionary is held by both the encoder and
the decoder. Although this is acceptable for the transmission of text which
has been created using a standard word-processing package, it can be rela-
tively inefficient if the text to be transmitted comprises only a small subset of
the words stored in the dictionary. Hence a variation of the LZ algorithm has

K‘\ U\M\\been developed which allows the dictionary to be built up dynamically by the

encoder and decoder as the compressed text is being transferred. In this way,
the size of the dictionary is often a better match to the number of different

oA words in the text being transmitted than if a standard dictionary was used.

Lempel-Ziv—-Weish coding

The principle of the Lempel-Ziv-Welsh (LZW) coding algorithm is for the
encoder and decoder to build the contents of the dictionary dynamically as
the text is being transferred. Initially, the dictionary held by both the encoder
and decoder contains only the character set — for example ASCII — that has
been used to create the text. The remaining entries in the dictionary are then
built up dynamically by both the encoder and decoder and contain the words
that occur in the text. For example, if the character set comprises 128 charac-
ters and the dictionary is limited to, say, 4096 entries, then the first 128
entries would contain the single characters that make up the character set
and the remaining 3968 entries would each contain strings of two or more
characters that make up the words in the text being transferred. As we can

2 4 see, the more frequently the words stored in the dictionary occur in the text,

P o -\u;‘(d& the higher the level of compression.

S e In order to describe how the dictionary is built up, let us assume that the
and &b A O text to be compressed starts with the string:

WL!UO\' % 'V\:h"

koo Al & Thisis simpleas it is ...
e
o ‘&Jf\ @,Lh\y
™ ” K ‘.\G{'\ N
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Since the idea is for the dictionary to contain only words, then
only strings of characters that consist of alphanumeric characters are stored
in the dictionary and all the other characters in the set are interpreted as
word delimiters.

Initially, the dictionary held by both the encoder and decoder contains
only the individual characters from the character set being used; for example,
the 128 characters in the ASCII character set. Hence the first word in the
example text is sen. by the encoder using the index of each of the four char-
acters T, b, i, and s. At this point, when the encoder reads the next character

fiad dor from the string — the first space (SP) character — it determines that this is not

‘L an alphanumeric character, It therefore transmits the character using its
wg.é‘ index as before but, in addition, interprets'it as terminating the first word

W S\ % and hence stores the preceding four characters in the next available (free)

‘ \ location in the dictionary. Similarly the decoder, on receipt of the first five

{ r a indices/codewords, reads the character stored at each index and commences

e to reconstruct the text. When it determines that the fifth character is a space

character, it interprets this as a word delimiter and proceeds to store the word

1 AF uﬂ-v d This in its dictionary.

ST 47 ab - The same procedure is followed by both the encoder and decoder for
e T e transferring the other words except the encoder, prior to sending each word
. Uﬂ“g’“ in the form of single characters, first checks to determine if the word is cur-

rently stored in its dictionary and, if it is, it sends only the index for the word.
I w2 .. Similarly the decoder, since it also has the word stored in its dictionary, uses

AT .. the index to access the string of characters that make up the word. So with

b7 the example text string, after the space character following the second occur-

et rence of the word s, the contents of the dictionary held by both the encoder

' and the decoder will be as shown in Figure 3.8(a). As we can see, since this is

the second occurrence of the word s, it is transferred using only the index of

where it is stored in the dictionary (129).

As we can deduce from this example, a key issue in determining
the level of compression that is achieved, is the number of entries in the
dictionary since this, in turn, determines the number of bits that are
required for the index. With a static dictionary, the number of entries is
fixed and, for the example we identified earlier, a diciionary containing
g M 25 000 words requires 15 bits to encode the index. When building the

vs‘““’ ~r& - " ,dictiopary dynamically, however, the question arises as 10 how many entries

Jrre " ¥ Xu( 3_# 'should be provided for the dictionary. Clearly, if too few entries are provided

; then the dictionary will contain only a subset of the words that occur in

the text while if too many are provided, then it will contain empty spaces

s which, in turn, makes the index unnecessarily long. In order to optimize

. MY\‘(:V the number of bits used for the index, at the commencement of each

transfer the number of entries is set to a relatively low value but, should the

o available space become full, then the number of entries is allowed to

VMY increase incrementally.

1 &

o Y ot A5 ‘u\_i] \“U\‘;
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(a)
Dictionary contents:
{index = 8bits| These locations used to
L hold the codewords of

the basic characler set

These locations used 1o
L hold the codewords of

the characters that make
up each new word that
occurs in the lext string

i

Thisisusimplenaswituis
LN A

This is sent using the index of the word is {129)

Each character is sent using the index of the individual choracter
in the basic character set

(b}

0 1
i Basic character set

127

Inifial index 128 )

= 8 bits

Index incremented + Existing dictionary

to @ bits

L Extended dictionary

Figure 3.8 LZW compression algorithm: (a) basic operation;
{b) dynamically extending the number of entries in the dictionary.

For example, in an application that uses 128 characters in the basic
character set, then both the encoder and decoder would start with, say,
956 entries in the dictionary. This requires an index/ codeword length of
8 bits and the dictionary would provide space for the 128 characters in the
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character set and a further 128 locations for words that occur in the text.
Should this number of locations become insufficient, on detecting this, both
the encoder and decoder would double the size of their dictionary to 512
locations. Clearly, this necessitates an index length of 9 bits and so from this
point, the encoder uses 9-bit codewords. However, since the decoder has also
doubled the size of its own directory, it expects 9-bit codewords from this
point. In this way, the number of entries in the dictionary more accurately
reflects the number of different words in the text being transferred and
hence optimizes the number of bits used for each index/codeword.

The procedure is shown in diagrammatic form in Figure 3.8(b). In this
example it is assumed that the last entry in the existing table at location 255 is
the word fish and the next word in the text that is not currently in the dictio-
nary is pond.

3.4 Image compression

w\)_{j?f{’_w Recall from Section 2.4 how images can be of two basic types: computer-
T generated (also known as graphical) images and digitized images (of both
e | (,L? iy A d}i)(:t;ments and picnlxres). z.klthough b::)th types are disp]layed (ar;d printed) in
ol G j Lpick the form of a twc‘)-dlmepsmnal matrix .of mdmd‘ual picture elements, nor-
- eakilal) / ( A=« P mally a graphical image is represented differently in the computer file system.
(et ’ Typically, this is in the form of a program (written in a particular graphics
s X programming language) and, since this type of representation requires con-
. siderably less memory (and hence transmission bandwidth) than the
rﬂ!j";" ~ corresponding matrix of picture elements, whenever possible, graphics are

o 2l

i
!

i

i Aiefg%“l

PR qi transferred across a network in this form. In the case of digitized documents
D" T,‘l\,u, ¢ and picture‘s, however, once digitized, the only form of representation is as a

‘ N, * two-dimensional matrix of picture elements.
e e Uﬂj‘"‘ ; In terms of compression, when transferring graphical images which are
Y _ represented in their program form, a lossless compression algorithm must be
B - a ?ggﬂlﬁ . used similar, for example, to those in the last section. However, when the cre-
l_pwﬁjf J rabal s8h%  ated image/graphic is 10 be transferred across the network in its bit-map
. AT form, then this is normally compressed prior to its transfer. There are a
b EW M] / number of different compression algorithms and associated file formats in

/ - . -
- use and we shall describe two of these in the next two sections.
=9 .N,)’M To transfer digitized images a different type of compression algorithm
' o . must normally be employed and, in practice, two different schemes are used.

/Ee*‘ m?M%mThe ﬁrs't i.s based on a combination of run-length and stati.stical encoding.
W)_l,oTb;UL - vm;" e Hence it is lossless and is used for the transfer of the digitized documents
{ Tt generated by scanners such as those used in facsimile machines. The second

;J_,‘,VMC N is based on a combination of transform, differendal, and run-length encod-

ing and has been developed for the compression of both bitonal and color

- éi\' : (-nrc % digitized pictures. Since there is an international standard associated with
s Eun Vs _"’ v i both schemes, we shall limit our discussion to these two schemes.
[0
p ] e g L
A A
pivk Olaiu L_:w:\ 15.,,\41&* Lt I'ln-(
e _r‘ b ’ ’ b" '
‘ng’r‘ {.‘-«l:r,cu 85 en’ uf ‘f' d\( o A
)i’(.‘._.\ . wk ot &.‘. ‘ ¢ L~ ((J"«'J""cg‘
L“tﬁ‘ [
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3.4.1 Graphics interchange format

The graphics interchange format (GIF) is used extensively with the Internet

.y for the representation and compression of graphical images. Although color
Lot “ ) images comprising 24-bit pixels are supported — 8 bits each for R, G, and B -
- aistiog 24 wit . GIF reduces the number of possible colors that are present by choosing the
eils abt wfr,ai«br{ 256 cPlors from the original set of 224 colors that match most closely those
3- R/[; Je used in the original image. The resulting table of colors therefore consists of
956 entries, each of which contains a 24-bit color value. Hence instead of send-
wle ueg  ing each pixel as a 24-bit value, only the 8-bit index to the table entry that
v 0{ et y contains the closest match color to the original is sent. This results in a com-
& pression ratio of 3:1. The table of colors can relate either to the whole image -
Gt T wes, ovdgd 56 in which case it is referred to as the global color table — or to a portion of the
daad i At A # image, when it is referred to as a local color table. The contents of the table
foes e Do are sent across the network — together with the compressed image data and
N other information such as the screen size and aspect ratio — in a standardized

¢ format. The principles of the scheme are shown in Figure 3.9(a).
: _ As we show in Figure 3.9(b), the LZW coding algorithm can be used to
e >G4 e e bl obtain further levels of compression. We described this earlier in Section
i ;&W 3.3.5 when we discussed text compression and, in the case of image compres-
o B 1 Jy sion, this works by extending the basic color table dynamically as the
J Lle exfon compressed image data is being encoded and decoded. As with text compres-
S LL,.M,L sion, the occurrence of common s@_g_qf_p_xcl.m]ucs - such as long strings
Lo o Nig ot - of the smm'md these are entered into the color table
Mgleh- 4> after the 256 selected colors. However in this application, since each entry in

[

ko 371 the color table comprises 24 bits, in order to save memory, to represent each ... 4
W""‘T’Wh smng of pixel values just the corresponding string of 8-bit mdlces to the basic
color table are used. If we limit each entry in the table to 24 bits, then this will
J toble e Labsbo by { allow common Siings comprising three pixel values to be stored in each loca-
ol

vl-ola inege - tion of the extended table. Normally, since the basic table contains 256
" entries, an initial table size of 512 entries is selected which allows for up to
‘ s u.L 956 common strings to be stored. As with text compression, however, should
{Mmh" more strings be found, then the number of entries in the table is allowed to
e """ increase incrementally by extending the length of the index by 1 bit.
) *ﬁ i 1 b § able “GIF also allows an image © be stored and and subsequently transferred over

the network in an interlaced mode. This can be useful when transferring

‘ e e dete  images over either low bit rate channels or the Internet which provides a vari-
. able transmission rate. With this mode, the compressed image data is
‘5 o organized so that the decompressed image is built up in a progressive way as
MR > i 0 the data arrives. To achieve this, the compressed data is divided into four

‘ WM " groups as shown in Figure 3.10 and, as we can see, the first contains 1/ B of
e Sk aesie the total compressed image data, the second a further 1/8, the third a fur-

LT £ ther 1/4, and the last the remaining 1/2. ; Bt
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(a)
Red Green Blue B-bit index
8 B 8
Color dictionary: : 0

! These locations used to hold the
{denved by the source 256 colors from the possible
using either a localized ' 274 set of colors that are 1o be
set of colors in the image v > used fo represent all the colors
- a local color table - E in the image. The color of each
or oll the colors in the : pixel in the image is sent using
image — a global ! the 8-bit lakle index
cotor table) 955

The color dictionary, screen size, ond aspect ratio ore sent with the set of indexes for the image.

{b)
kit index
8

8 8
Color dictionary: 0 -
1
> Basic sef of 256 selected colors
255
<
Dictionary of common 256
strings of pixel values
of the same color - 257 . .
derived d call Strings of 3 pixels of the same
erivec dynamically basic color sent using the index
of the related table entry
511
~
512
Table can be extended i sirings
of different colors are included

Figure 3.9 GIF compression principles: (a) basic operational mode;
{b) dynamic mode using LZW coding.

3.4.2 Tagyged image file format 5
oppa b xed ey The tagged image file format (TIFF) is also used extensively. It supports pixel
gt OF L > lerock resolutions of up to 48 bits — 16 bits each for R, G, and B - and is intended for
e (r' oaae. d( vred the transfer of both images and dlgmzed documents. The i image data, there-
B iz:rc fore, can be stored — and hence transferred over the network — in a number
oge Sade sec e tetad of different formats. The particular format being used is indicated by a code
v Pge & honre brfohe number and these range from the uncompressed format (code number 1)
R M éb through to LZW-compressed which is code number 5. Code numbers 2, 3,
- and 4 are intended for use with digitized documents. These use the same
L ,\d,-@tc den o Lode v
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Figure 3.10 GIF interlaced mode.
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compression algorithms that are used in facsimile machines which we discuss

in the next section.

The LZW compression algorithm that is used is the same as that used
with GIF. It starts with a basic color table containing 256 colors and the table
can be extended to contain up to 4096 entries containing common strings of
pixels in the image being transferred. Again, a standard format is used for
the transfer of both the color table and the compressed image data.
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3.4.3 Digitized documents

We described the principle of operation of the scanners used in facsimile
machines to digitize bitonal images (such as a printed document) in Section
2.4.3. The digital representation of a scanned page was shown in Figure
2.11(b} and, even though only a single binary bit is used to represent each
picture element, with the resolutions used, this produces an uncompressed
bit stream of the order of 2Mbits. In most cases this must be transferred
using modems and the public switched telephone network. The relatively
low bit rates available with modems means that it would be both costly and
time consuming to transfer a total document comprising many pages in this

basic form.
padr eloc ) With most documents, many scanned lines consist only of long strings of
carned o freechige L/ white picture elements — pels — while others comprise a mix of long strings of
s (iic piche white and long strings of black pels. Since facsimile machines are normally
'é: T 5 used with public carrier networks, the ITU-T has produced standards relating

_ . to them. These are T2 (Group 1), T3 (Group 2), T4 (Group 3), and T6

Al i o] Hedefeld S(Group 4). The first two are earlier standards and are now rarely used. The

e ' last two, however, both operate digitally; Group % with modems for use with

_ an analog PSTN, and Group 4 all-digital for use with digital networks such as

FAX_ ’“’M[“ ) . the ISDN. Both use data compression, and compression ratios in excess of

e wify put- he (2748- 10:1 are common with most document pages. The time taken to transmit a

N (JGF‘.;,;,{/{) ifin PP8E is reduced to less than a minute with Group 3 machines and, because of

'TE( Goop: | the added benefit of a higher transmission rate (64 kbps), to less than a few
PR seconds with a Group 4 machine.

o (B = As part of the standardization process, extensive analyses of typical scanned

Té (Lo document pages were made. Tables of codewords were produced based on the

relative frequency of occurrence of the number of contiguous white and black

pels found in a scanned line. The resulting codewords are fixed and grouped

vy rerdsend ald dae el

+9 1M ;""’?! 7wt k.. into two separate tables: the termination-codes table and the make-up codes
O g 8L0F dapt 7"‘] table. The codewords in each table are shown in Figure 3.11.
(el 159t Codewords in the termination-codes table are for white or black run-

lengths of from 0 to 63 pels in steps of 1 pel; the make-up codes table
contains codewords for white or black run-lengths that are multiples of 64
pels. A technique known as overscanning is used which means that all lines

Joo gt dale P
{01 temp velo

{i_"‘“ botr start with a minimum of one white pel. In this way, the receiver knows the first
It B ‘ e fran.  €Odeword always relates to white pels and then alternates between black and

o pear i fm caed white. Since the scheme uses two sets of codewords (termination and make-

} A Mgt up) they are known as modified Huffman codes. As an example, a run-length

‘ 1’ of 12 white pels is coded directly as 001000. Similarly, a run-length of 12 black

] Lok br,} pels is coded directly as 0000111. A run-length of 140 black pels, however, is

N encoded as 000011001000 + 0000111; that is, 128 + 12 pels. Run-lengths

*n».ni’j/f‘!f €6 van Mcb]f'%” exceeding 2560 pels are encoded using more than one make-up code plus

N (k one termination code.

coda wtek There is no error-correction protocol with Group 3. From the list of

I:MvilalIR " J""?' ocget.codewords, we can deduce that if one or more bits is corrupted during its
(je O,' no. 5} 22 ft)uﬂ/‘fh 1»2:1!? Y ‘I BV 1_&’_(',f.4p,:«|,] alf ing nl_'r.xL-:, Ak et U Ange
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(a)

While Code Black Code-
fun- o fun- o
length wor length wor
0| 00110101 0 | DOOO110111
Pl 0001 1|00
21 011t 211
31 1000 3110
4 [ 1011 41011
51 1100 51001
6| 1110 61 0010
71 N 7 | ool
81 10011 8 | CcoC1CT
Q1 10100 Q| cocroo
101 00111 10 [ 0000100
1] 01000 11+ 0000101
12 ] 001000 121 00001
13 [ oooon 13 | 00000100
141 110100 14 [ OOO0OT111
1571 11010 15 | 000011000
161 101010 16 | 0000010111
17 | 101011 17 | 0000011000
18 0100111 18 | 00C0COICOC |
19| 0001100 19 | 0OCCYI00LI Y
20 | 0001000 20 | CC001101000
211 000 21 [ CO001101100
22 | 0000011 22 | 00000110111
23 | 0000100 23 { 00000151000
24 [ 0101000 24 [ 0O000Q101 11
25 0101011 25 | 00000011000
26} 0010011 26 | 000011001010
27 | 0100100 27 | Q00011001011
281 0011000 28 | 000011001100
29 ] 0000COIC 29 | 000G110C1 101
30 | 000CCOM! 30 | 0CCOGH 101000
31 [ coorioto 31 | COCCCHIOI001
32 | CCOMIONT 32 | CO0001101010
33| 0010010 33 | 000001101011
34| 00010011 34 1 000011010010
351 00010100 351 00001101001
36| 00010101 34 | 000011010100
- 37 | 00010110 37 | 000011010101
38 | 00010111 38 | 00001101011
39| 00101000 39 | 0000110101 13
40 | 00101001 40 | 000CC1161100
411 0010101} 41 | 000COT 101101
42 1 001010114 42 | 0CCC11011010
43 | 00101100 43 | COCO11011011
44 | 0C1C110} 44 | COCOC1010100
45 [ CCOCOT00 45 [ 000001010101
46 | 00000101 46 | 000001010110
47 | 0000010 47 | 000001010111
48 1 00001011 48 | 000001100100
49 1 01010010 49 | 000001100101
50| 01010011 50 | 000001C10C10
5v [ 01010100 51 1 000001010011
521 01010101 52 | 00000010000
53 { 0010010C 53 | 00CCCOTI0NT]
541 00161 54 | COCCOCT11000
55| 01011000 55 | cooooc1001 11

{a) cont.

(b)

3.4 Image compression
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thi'e Code Black Code
il word rure word
length fength
56 [ 01011001 56 | 00OO000D1010CC
571 01011010 57 | 000001011000
58§ 01011011 58 | QO000I1C1IC0
591 0100101C 50 [ 000CCC10I0E
60 | 010010114 60 | 00000C10Y 100
&1 | 00110610 61 | 000001011010
62 | 0011001 &2 | 00000100110
&3 | 00110100 63 | 000001100111
While Code Black Code
fur word rur word
length length
a4 1101 64 | 0000001111
1281 10010 128 | 000011001000
192 | 010111 192 | 00011001001
256 0110111 256 | CCCCOY0T10T1
320 [ 00110110 320 | 000000110011
384 | OCQi0IN 384 { Q00000110100
448 | 01100100 448 | 000000110101
512 | O11001N 512 | 0000001101100
576 | 01101000 576 | 0000001101101
640 [ 0110011 &40 | 0000001001010
704 [ 011001100 704 | 000000100101
768 1 011001101 768 | 0000001001100
832 | 011010010 832 | 0000CO1001107
896 | 01101004 89¢ I 0000001110010
Q50 | CO11C10100 o60 | 0000001110011
1024 | C11010101 1024 | 0000001110100
1088 | CG11010110 1088 1 0000001110101
1152 | 011010111 1152 | 0000001110110
1216 | 011011000 1216 | 0000Q01110111
1280 | 011011001 1280 | QOO0001010010
1344 ¢ 011011010 1344 | 000000101001 1
1408 | 011011011 1408 | 0000001010100
1472 | 010011600 14772 | 0O0000C1C1010)
1536 | 01001100 1536 | 0000COH011010
1600 | 010C11010 1600 | 000001011011
1664 | G11000 1664 0000001100100
1728 | 01001101 {728 1 0000001100101
1792 | 00000001000 1792 | 00000001000
1856 |. 00000001100 1856 | 00000001100
1920 | 00000001101 1920 | 00000001101
1984 [ 000000010010 | 1984 | Q0000001001C
2048 | 00000001001 | 2048 | 000000010011
2112 { 0000000I1CI0D | 2112 | 000000010100
2176 | 0000QCCI0I01 | 2176 | 00000COI0I10]
2240 | 000000010110 | 2240 | OCCCOOQI0110
2304 | 0CQOOC010111 | 2304 | OOO000010111
2368 | 000000011100 | 2368 | 0OCC00011100
2432 | 000000011101 | 2432 | 000000011101
2496 | 000000011110 | 2496 | 00000Q011110
2560 | 000000011111 { 2560 | QO000COTT111
EOL [ 00000000001 EOL | 00000000001

Figure 3.11 ITU-T Group 3 and 4 facsimile conversion codes: (a) termination-codes,

(b) make-up codes.
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transmission through the network, the receiver will start to interpret subse-
quent codewords on the wrong bit boundaries. The receiver thus becomes

+ unsynchronized and cannot decode the received bit string. To enable the

receiver to regain synchronism, each scanned line is terminated with a known
end-of-line (EOL) code. In this way, if the receiver fails to decode a valid code-
word after the maximum number of bits in a codeword have been scanned
{parsed), it starts to search for the EOL pattern. If it fails to decode an EQOL
after a preset number of lines, it aborts the reception process and informs the
sending machine. A single EOL precedes the codewords for each scanned
page and a string of six consecutive EOLs indicates the end of each page.

Because each scanned line is encoded independently, the T4 coding
scheme is known as a one-dimensional coding scheme. As we can conclude, it
works satisfactorily providing the scatined image contains significant areas of
white or black pels which occur, for example, where documents consist of let-
ters and line drawings. Documents containing photographic images,
however, are not satisfactory as the different shades of black and white are
representg_d_by_varpng densities of black ana-ﬁ'f _thI' This, in turn, results
in a large number of very short black or white run—lenglh.&whu;h, with-the T4
coding scheme, can lead to a negative compression ratio; that is, more bits
are needed to send the scanned document in its compressed form than are
needed in its uncompressed form." '

For this reason the alternative T6 coding scheme has been defined. Itis an
optional feature in Group 3 facsimile machines but is compulsory in_Group 4
machines. When supported in Group 3 machines, the EOL code at the end of
each (compressed) line has an additional tag bit added. If this is a binary 1
then the next line has been encoded using the T4 coding scheme, if it is a 0
then the T6 coding scheme has been used. The latter is known as modified-
modified READ (MMR) coding. It is also known as two-dimensional or 2D
coding since it identifies black and white run-lengths by comparing adjacent
scan lines. READ stands for relative element address designate, and it is “modi-
fied” since it is a modified version of an earlier (modified) coding scheme.

MMR coding exploits the fact that most scanned lines differ from the pre-
vious line by only a few pels. For‘gxampt]‘,e\‘, if a line contains a black-run then
the next line will normally contain the same run plus or minus up to three
pels With MMR coding the run-lengths associated with a line are identified
by comparing the line contents, known as the coding line (CL), relative to the
immediately preceding line, known as the reference line (RL) We always
assume the first reference line to be an (imaginary) all-white lin€ and the first
line proper is encoded relative to this. The encoded line then becomes the
reference line for the following line, and so on. To ensure that the complete
page is scanned, the scanner head always starts to the left of the page, so each
line always starts with an imaginary white pel.

We identify the run lengths associated with a coding line as one of three

{ possibilities or modes relative to the reference line. Examples of the three

modes are shown in Figure 3.12. The three modes are identified by the posi-
tion of the next run-length in the reference line (b,4,) relative to the start

;
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(a) b, by
Reference line —m=
Ceding line —m=
b A
ay by by o, @

- run lenglh by b, caded
— new g, becomes old b,

{b)
Reference line —»
Coding line  —» a, left of by
A
A5
Reference line —m
i f
Coding line  —» | | a, right of by
k_w‘.._J
92 9by g a,

— i length a,b, coded
- new a, becomss old a,

(<)

Reterence line

Coding line

Refeience line

Coding fine

OOG} a,d;

- run lengths a0, [while] and eya, {black} coded
- new ay becomes old @,
Note: ay is the first pel of a new codeward and can be black or white
a, is the First pel to the right of o with o different color

by is the first pel on the reference fine fo the right of a,, with a different color
b, is the firs) pel on the reference line to the rght of b, with c different color

Figure 3.12 Some example run-tength possibilities: (a) pass mode;
(h) vertical mode; (c) horizontal mode.
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and end of the next pair of run-lengths in the coding line {(aya, and a,a,).
Note that the same procedure is used to encode the runs of both black and
white pels. The three possibilities are: ' )

1 Pass mode: This is the case when the run-length in the reference line
yov ciptin (ved J ko < Hy ﬁli by) is to the left of the next run-length in the coding line (a,a,), that
trhe 3] ek wanngbh (wd) s, by is to the left of ;. An example is given in Figure 3.12(a) and, for
i¢ byto left i this mode, the run-length 4, is coded using the codewords given in

) Figure 3.11. Note that if the next pel on the coding line, a,, is directly
it eerbpelnliodeg) ey 4 below &, then this is not pass mode.
i e lows by = X o romle y

a8, .-

2 Vertical mode: This is the case when the run-length in the reference line
e T T TR By overlaps the next run-length in the coding line (a,a,) by a

w9 L 10 we] b maximum of plus or minus 3 pels. Two examples are given in Figure
3.12(b) and, for this mode, Jjust the difference run-length a, b, is coded.
Most codewords are in this category.

dRLan
getads g AL N iR L

perling Mg 8412, b'\f “
¢ Le 3 Horizontal mode: This is the case when the run-length in the reference
s d( 4 3/» ) . Tine (& &) overlaps the run-length (a,a,) by more than plus or minus 3
A T lerghr ey by a2 pels. Two examples are given in Figure 3.12(c) and, for this mode, the two
rosed run-lengths a4, and a4, are coded using the codewords in Figure 3.11.

A flowchart of the coding procedure is shown in Figure 3.13. Note that
gt e =7 P“’b“ the first a, is set to an imaginary white pel before the first pel of the line and
g @Gy Ck o A« hence the first qya) run-length will be aya, - 1. If during the coding of a line

oh A @), ay by, or by are not detected, then they are set to an imaginary pel posi-
tioned immediately after the last pel on the respective line.

t Once the first/next position of @, has been determined, the positions of a;,
ay, by, and &, for the next codeword are located. The mode is then determined
by computing the position of 4, relative to a,. If it s to the left, this indicates pass
mode. If it is not to the left, then the magnitude of a4, is used to determine
whether the mode is vertical or horizontal. The codeword for the identified
mode is then computed and the start of the next codeword position, a,, updated
to the appropriate position. This procedure repeats alternately between white
and black runs until the end of the line is reached. This is an imaginary pel posi-
tioned immediately after the last pel of the line and is assumed to have a
different color from the last pel. The current coding line then becomes the new-
reference line and the next scanned line the new coding line.

Since the coded run-lengths relate to one of the three modes, additional
codewords are used either to indicate to which mode the following code-
word(s) relate - pass or horizontal - or to specify the length of the codeword
directly - vertical. The additional codewords are given in a third table known
as the two-dimensional code table. Its contents are as shown in Table 3.1, The
final entry in the table, known as the extension mode, is a unique codeword
that aborts the encoding operation prematurely before the end of the page.
This is provided to allow a portion of a page to be sent in its uncompressed
form or possibly with a different coding scheme.

iy
Zod ;

. [P i1
AT !
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EOL = end of line

FOP = end of page

Figure 3.13 Modified-modified READ coding procedure.
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3.4.4

3.4.5

Table 3.1 Two-dimensional code tahle contents.

Run-length to be encoded Abbreviation  Codeword
¢ Pass by
&

SHoriz ol

“Merficod

Digitized pictures

We described the digitization of both continuous-tone monochromatic pic-
tures and color pictures in Section 2.4.3. We also calculated the amount of
computer memory required to store and display these pictures on a number
of papalar 1ypes of display and tabulated these in Table 2.1. The amount of
memory ranged from {approximatebyy 307 kKhytes through to 2.4 Mbytes and,
as we concluded, 2l would vesult in unacceptably long delays in most interac-
tive apptioations that involve low bit rate networks.,

Lt order to reduce the time w transmit digitized pictures, compression is
normally applied to the wo-dimensional arrav of pixel values that represents a
digitized picture before it is transmitted over the network. The most widely-
adopie D stndard relating to the compression of digitized pictures has been
develip-od by an international standards body known as the Joint Photographic
Expeits Group {(JPEG). JPEG also forms the basis of most video compression
algoritfins and hence we shall limit our discussion of the compression of digi-
tized pictoees to deseribing the main principles of the JPEG standard.

JPE:;

As v o dednee from the name, the JPEG standard was developed by a
tealns =5 s orts, each of whom had an in-depth knowledge of the compres-
sion of digitized pictures. They were working on behalf of the IS0, the 1TL,
and the IEC and JPEG is defined in the international standard IS 10918. In
pracuce. the standard defines a range of different compression mades, each
of w Lo Daended for use 1o a particular application domain. We shall
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restrict our discussion here w the lossy seqaential mode — also known as the
baseline mode — since it is this whicl is siten ol for the compression of both
monochromatic and color digitized picrires “images as used in multimedia
communication applications. There are Jive mnin stages associated with this
mode: image/block preparation, torward DC1, (uantization, entropy encod-
ing, and frame building. These are shown i Figure 3.14 and we shall discuss
the role of each scparately.

Image/block preparation

As we described in Section 2,53, in its pixel foin. the source image/picture
is made up of one or more 2-1) matrices of viiues. In the case of a continuous-
tone monochrome image, just a single 2-13 i is required to store the set
of 8-bit gray-level values that represent e v Similarly, for a color image,
if 2 CLUT is used just a single rostrix ot veie ~ s required.

Alternatively, if the Tnage s veprosenie i ot R, G, Bformat three matri-
ces are required, one cach for the 10 G nd 4 quantized values. Also, as we
saw in Section 2.6.1 when we discussed the ropresentation of a video signal,
for color images the alternative form ot representation known as ¥, G, € can
optionally be used. This is done to exploit the fact that the two chrominance
signals, (5, and C, require halt (he bandwihi of the lnminance signal, ¥. This
in turn allows the two matrices shat cons o il digitized chrominance com-
ponents to be stnaller in size than the Y uonis so producing a reduced form

JPE D aties

Image /block praf_:oruﬁon’

Encoded
bitstream

Figure 3.14 JPEG encoder schematic.
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of representation over the equivalent R, G, B form of representation. For
example, in the 4:2:0 format, groups of four neighboring chrominance values
are averaged to produce a single value in the reduced matrix so reducing the
size of the G, and C, matrices by a factor of four. The four alternative forms of
representation are shown in Figure 3.15(a).

Once the source image format has been selected and prepared, the set of
values in each matrix are compressed separately using the DCT. Before per-
forming the DCT on each matrix, however, a second step known as block
Ppreparation is carried out. This is necessary since to compute the trans-
formed value for each position in a matrix requires the values in all the
locations of the matrix to be processed. It would be too time consuming to
compute the DCT of the total matrix in a single step so each matrix is first
divided into a set of smaller 8 x 8 submatrices. Each is known as a block and,
as we can see in part (b) of the figure, these are then fed sequentially to the
DCT which transforms each block separately.

Forward DCT

We described the principles of the DCT earlier in Section 3.2.4. Normally,
each pixel value is quantized using 8 bits which produces a value in the
range ( to 255 for the intensity/luminance values - R, G, B, or Y-and a
value in the range -128 to +127 for the two chrominance values — G, ,and C.
In order to compute the (forward) DCT, however, all the values are first cen-
tered around zero by subtracting 128 from each intensity/luminance value.
Then, if the input 2-D matrix is represented by: P[x, 3] and the transformed
matrix by F[, j], the DCT of each 8 x 8 block of values is computed using

the expression: .
P VP 20 I"t"ﬁ'h‘ X

RS (N (2x+1)in_ (2y+ 1)jn
F[l,]] = 4C(1)C(]) g}éjp[x, y] cos 6 cos 16

where C(i) and C(j) = 1/¥2 for 4, j=0
=1 for all other values of i and j
and x, y, {, and jall vary from 0 through 7.

You can find further details relating to the DCT in the bibliography for
this chapter at the end of the book. However, we can deduce a number of
points by considering the expression above:

W All 64 values in the input matrix, P{x. y] contribute to each entry in the
transformed matrix, F[4, j].

B For i=j=0, the two cosine terms (and hence horizontal and vertical
frequency coefficients) are both 0. Also, since cos(0)=1, the value in
location F10,0] of the transformed matrix is simply a function of the
summation of all the values in the input matrix. Essentially, it is the mean
of all 64 values in the matrix and is known as thé DC coefficlent.
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B Since the values in all the other locations of the transformed matrix-tive
a frequency coefficient associated with them ~ either horizontal (=17
fory="=0y vertical (x=0 for y= 1-7) or both (x=1-7 for y= 1-7) - they
are known as AC coefficients.

increase in frequency for i=1=7,

B Fori-= 0, only vertical frequency coefficients are present which increase
in frequency for j= 1-7.

B Inail other locations in the transformed.matrix, both horizontal an-i
vertical frequency coefficients are present to varying degrees.

The above points are summarized in Figure 3.16. In order to guin a gual-
tative understanding of the likely values present in a transformed block,
consider a typical image comprising, say, 640 x 480 pixels. Assuming : hlock
size of 8x 8 pixels, the image will comprise 80x 60 or 4800 blocks cach of
which, for a screen width of, say. 16 inches (400 mmy}, will occupy a square of
only 0.2x0.2 inches (5x 5mm). Hence those regions of a picture that coptain
a single color will generate a set of transformed blocks ali of which #ii! have
firstly, the same (or very similar) DC coefficient and secondly, only a few AT

Plx vl FL
x=0 1 2 % 4 5 6 7 i=0 1
y=0 i=0 s
1 1
2 2 i b v./. -‘ ¥ ’4. - . K .
3 m e
4 4 [T EOTrORREOHORD:
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o > % ¥, -
7 l 7&“._.‘_, Bk VN >
. Increasing f. and £
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coeflicients
Pl \,]=8x8mo.ao*p.xc anes
FLi. ) = 8 x 8 matrix of transtermed values/spatiol fequency coe ' <ienis
in F i) [I = PC coeilcien D = AC coefficients

., = horizortdl spatial fraquen~y coetlicient
f, = verhcal spatial frequency coefficient

Figure 3.16 DCT computation features. /
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coefficients within them. Thus it is only those areas of 2 picture which contain
color transitions that will generate a set of transformed blocks with different
DC coefficients and 2 larger number of AG coefficients within them. It 1s
these features that are exploited in the guantization and entropy encoding
phuses of the compression algorithin,

Quantization

In theory, providing the forward DCT is computed to a high precision using,
say, floating point arithmetic, there is very little loss of information during the
DCT phase. Although in practice small losses occur owing to the use of fixed
point arithmetic, the main source of information loss occurs during the quan-
tization and entropy encoding stages where the compression takes place.

As we identified earlier in Section 3.2.4 when we first discussed trans-
form encoding, the human eye responds primarily to the DC coefficient and
the lower spatial frequency coefficients. Thus if the magnitude of a higher
frequency coefficient is below a certain threshold, the eye will not detect it.
This property is exploited in the quantization phase by dropping - in prac-
tice, setting to zero — those spatial frequency coefficients in the transformed
matrix whose amplitudes are less than a defined threshold value. It should
be noted, however, that although the eye is less sensitive to these frequency
coefficients, once dropped, the same coefficients cannot be retrieved during
the decoding procedure.

In addition to determining whether a particular spatial frequency coetfi-
cient is above a defined threshold, the quantization process aims to reduce
(he size of the DC and AC coefficients so that less bandwidth is requirreiawfor
hretr transmission, Instead of simply comparing each coefficient withthe cor-
'i"espdifai_llgdl_lir'eshold value, a division operation is performed using the
defined threshold value as the divisor. If the resulting (rounded} quotient is
zero, the coefficient is less than the threshold value while if it 15 non-zero, this
indicates the number of times the coefficient is greater than the threshold
rather than its absolute value. For example, if the divisor is set to 16, then this
will save 4 bits over the use of the absolute value. Clearly, this saving 1s at the
expensc of the precision used for the absolute values since in the decoder,
these are determined by simply multiplying the received values by the corre-
sponding threshold value.

As discussed, the sensitivity of the eye varies with spatial frequency, which
implies that the amplitude threshold below which the eye will detect a partic-
ular spatial frequency also varies. In practice, therefore, the threshold values
used vary for each of the 64 DCT coefficients. These are held in a two-
dimensional matrix known as the quantization table with the threshold value
(0 be used with a particular DCT coethicient in the corresponding position
in the matrix.

Clearly, as we can see from the above, the choice of threshold values is
unportant and, in practice, is a compromisc between the level of compression
that is required and the resulting amount of information loss that is accept-
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-

Example 3.4

able. Although the JPEG standard includes two default quantization table
values — one for use with the luminance coefficients and the other for use with
the two sets of chrominance coefficients - it also allows for customized tables
to be used and sent with the compressed image. An-example set of threshold
values is given in the quantization table shown in Figure 3.17 together with a
set of DCT coefficients and their corresponding quantized values. We can con-
clude a number of points from the values shown in the tables:

®  The computation of the quantized coefficients involves rounding the
quotients to the nearest integer value.

8 The threshold values used, in general, increase in magnitude with
increasing spatial frequency.

B The DC coefficient in the transformed matrix is largest.

8  Many of the higher-frequency coefficients are zero.

It is the last two points that are exploited during the following entropy
encoding stage.



Figure 3.17 Example computation of a set of quantized DCT coefficients.
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Quantization table

Entropy encoding

As we saw earlier in Figure 3.14, the entropy encoding stage comprises four
steps: vectoring, differential encoding, run-length encoding, and Huffman

encoding. We shall describe the role of each step separately.

DCT coéffic'\enrs Guantized coefficients
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Vectoring The various entropy encoding algorithms we described earlier in
Section 3.2.3 operate on a one-dimensional string of values, that is, a vector.
As we have just seen, however, the output of the quantization stage is a 2-D
matrix of values. Hence before we can apply any entropy encoding to the set
of values in the matrix, we must first represent the values in the form of a
single-dimension vector. This operation is known as vectoring.
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As e an s tagure 3017, the ourput of a typical quantization is a 2-D

wap" \inri\' of vidnes “cacflicients which are mainly zeros except for a number of

!N"u )ﬁ.

tonzero values in the wip ieft-hand corner of the matrix. Clearly, if we simply
scanned tes ity using a line-by-line approach, then the resulting (1 x 64)
vector winild contain 2 nix of non-zero and zero values. In general, however,
this type of inforimadon sicucture does not lend itself to compression. In
order Lo exploit the prescice of the large number of zeros in the quantized
matrix, i zig-zag scau of the matrix is used as shown in Figure 3.18.

As we can deduce from the figure, with this type of scan, the DC coefficient
and lowerdrequenay AC coefficients — both horizontal and vertical ~ are scanned
first. Also, a1l the tnghei-frequency coefficients are in a sequential order so
making this 1ovi o representation more suitable for compression. As we saw
carlier iv Fiuie 30 1 o different encoding schemes are applied in parallel to
the values irs the vecion he first is differential encoding, which is applied to the
DC cocfficient valy, anid the second is run-length encoding, which is applied to
the remainbig vafue s fnthe vector containing the AC coefficients.

1

Differential encoding The first element in each transformed block is the DC
coelficient wiich is a measure of the average color/lumlnance/chrgrﬁnﬁmance
associated witl the Corresponding 8 X B blocK of pixel values. Hence it is the
largest codfficient and, because of its importance, its resolution is kept as
high a- possibte during the quantization phase. Because of the small physical
area covored by cuch Black, the DC coefficient varies only slowly from one
block to the nese,

linearized vector

AC coefficients in increasing
order of frequency

DC cosflicient

1211109 8 7 6 543 2 10
olofz]zf2]2]373]3]7Te 7]

Figure 3.18 Vectoring using a zig-zag scan: (a) principle; (b) vector for
examgpie shown in Figure 3.17.
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As we described in Section %24, the wost efficient type of compression
with this form of information structure is differential encoding sinee-this
encodes only the ditference between each pair of values in a string rather
than THeéiF absolute values, Hence in this application, only the difference in
magnitude of the DC coefficient in a quauntized block relative to the value in
the preceding block is encoded. Tn this way, the number of bits required to
encode the relatively large magrorudes of the DO cocficients is reduced.

For example, if the sequence vf DU coclfivients in consecutive quantized
blocks — one per binck - was:

1913, 11, 11,14,
the corresponding difference vabue s woald b
DL DRI Y FEY B

the first difference value always being encoded relative to zero. The differ-
ence values are then encoded in the form (SSS, value) where the §8S field
indicates the number of bits needed t: encode the value and the value field
the actual bits that represent the value. The rules used to encode each value
are summarized in Figure 3.19(a).

As we can see, the number of birs verpuired to encode each value is deter-
mined by its magnitude. A positive value is then encoded using the unsigned
binary form and a negative vialue by the complement of this. Note also that a
value of zero is encoded using a single () hit ) the $5Sfield.

e

Example 3.5

T L s

¥ k AT

termine the encoded version of ‘the folfd
which retate to the encoded DC coefficients ]
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(a)
Cilerence value Number of bits needed Enceded value
[555]
0] 0
-1, 1 i ] =) ,=1=0
-3,-2,2,3 2 2=10 -2 =0
3=11 ,-3=00
7.4, 4. 7 3 4=100 ,-4=01"
5=101 ,-5=010
6=110 ,-6=001
7=111 |, -7=000
-15..-8,8...15 4 8=1000,-8=0117
{b)
Number of bits needed HuHman codeword
(555}
0 C10
| 0nl
2 100
3 00
4 101
5 110
I} 1110
7 1110

11 1110

Figure 3.19 Variahle-length coding: (a) coding categories; (b) default
Huffman codewords.

ficients and, because of the zig-zag g scan, the vector contains Tong strings of
zeros within it. To exploit this feature, the AC coefficients are encoded in the
form of a stririg of pairs of values. Each pair is made up of (skip, value) where
skip is the number of zeros in the run and value the next non-zero coeffi-
cient. Hence the 63 values in the vector shown earlier in Figure 3.18 would be
encoded as:

Run-length encoding The remaining 63 values in the vector are the AC coef-

(0,6)(0,7)(0,3)(0,3)(0.,8)(0,2) (0,2) (0,2) (0,2) (0,0)

Note that the final pair (0,0) indicates the end of the string for this block and
that all the remaining coefficients in the block are zero, Also, that the value
field is encoded in the form SSS/value,
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Example 3.6

pot EM‘M

Huffman encoding As we saw in Section 3.4.3 when we described the encod-
ing of digitized documents, significant levels of compression can be obtained
by replacing long strings of binary digits by a string of much shorter code-
words, the length of each codeword being a function of its relative frequency
of occurrence. Normally, a table of codewords is used with the set of code-
words precomputed using the Huffman coding algorithm. The same
approach is used to encode the output of both the differential and run-
length encoders.

For the differentialencoded DC coefficients in the block, the bits in the
S§SS field are not sent in their unsigned binary form as shown in Example 3.5
but in a Huffman-encoded form. This is done so that the bits in the SSS field
have the prefix property — which we described earlier in Section 3.3.1 - and
this enables the decoder to determine unambiguously the first SSS field from
the received encoded bitstream.

Example 3.7
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3.7 Continued

Huffman-encoded Encoded  ° Encoded
585 value * birstreom

ncoded 58§ fields, they
irne set of codewords, it &
the received (vncoded) bit-
iy i y-bi&—-.s‘tarﬁting {rom the leftmost
valid codeword. The number of bits in the corre-

: te table i Figure 3.19(b) and

For each of the run-length encoded AC coefficients in thie block, the bits
that make up the skip and §S8S fields are treated as a single (composite)
symbol and this is then encoded using either the defanlt table of Hutfman
codewords shown in Tahle 3.2 or a table of codewords thar is sent with the
encoded bitstream. Again, this is done so that the string of «veaded compos-
ite symbols all have the prefix property so that the decoder can juterpret the
received bitstream on the correct coefficient boundarics Vo coeble the
decoder to discriminate between the skip and SSSfields, each combinaton of
the two fields is encoded separately and the composite symbol i1s then
replaced by the equivalent Huffman codeword.

As we can deduce from Example 3.8, to decode the received bitstream
the receiver first searches the bitstream — starting at the lefunost bit - for @
valid codeword and, on finding this (100), determines th- corresporaiing
skipp (0) and 558 (3) fields from the Huffman table. The 5SS field is then
used to determine the number of bits in the run-length v:lve fiokd aad,
after reading and decoding these, the process repeats until e freas oo
word is received indicating that the remaining coefficierus cie o0t
Because of the use of variable-length codewords in the virions -1
entropy encoding stage, this is also known as the vari-®!- oo
(VLC) stage.
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Tahle 3.2 Default Huffman codewords for encoding AC coefficients.

3/5. 0 7 SmniTHolnn . 1/ - 1o
13/6 nnnnloommo ' ';.?/4 JHITNINN0I10000 112 . 11110
3/7 mmmoozoon }-7/5 MT1I11110110001 13 111!11&1110}‘% i
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Table 3.2 Continued

ewor

EOB = end of block

Example 3.8
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3.8 Continued

Huffiman codeword

In this example, the number of bits required to transmit the set of AC
coefficients for the 8 x 8 biock of pixels is 29 and, assuming 6 bits for the DC
coefficient, the total for the block is 35 bits. Hence assuming each pixel value
is 8 bits, the resulting compression ratio for this block is 512/35 or, approxi-
mately, 14.6:1.

Frame building

Typically, the bitstream output by a JPEG encoder - corresponding to, say,
the compressed version of a printed picture — is stored in the memory ofa
computer ready for either integrating with other media if necessary or access-
ing from a remote computer. As we can see from the above, in order for the
decoder in the remote computer to be able to interpret all the different fields
and tables that make up the bitstream, it is necessary to delimit each field and
set of table values in a defined way. The JPEG standard, therefore, also
includes a definition of the structure of the total bitstream relating to a par-
ticular image/ picture. This is known as a frame and its outline structure is
shown in Figure 3.20.

The role of the frame builder shown earlier in Figure 3.14 is to encapsu-
late all the information relating to an encoded image/picture in this format
and, as we can see, the structure of a frame is hierarchical. At the top level,
the complete frame-plus-header is encapsulated between a start-of-frame and
an end-offrame delimiter which allows the receiver to determine the start and
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tevel 1

level 2

levei 3

Set of Huffman codewords
for the block

Figure 3.20 JPEG encoder output hitstream format.

end of all the information relating to a complete image/picture. The frame
header contains a number of fields that include:

the overall width and height of the image in pixels;

the number and type of components that are used to represent the
image (CLUT, R/G/B, Y/ G /C);
the digitization format used (4:2:2, 4:2:0 etc.).

At the second level, a frame consists of a number of components each of

which is known as a scan. These are also preceded by a header which contains
fields that include:

the identity of the components (R/G/B etc.);
the number of bits used to digitize each component;

the quantization table of values that have been used to encode each
component.

Typically, each scan/component comprises one or more segments each of

which can contain a group of (8 x 8) blocks preceded by a header. This con-
tains the Huffman table of values that have been used to encode each block
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in the segment should the default tables not be used. In this way, each seg-
ment can be decoded independently of the others which overcomes the
possibility of bit errors propagating and affecting other segments. Hence
each complete frame contains all the information necessary to enable the
JPEG decoder to identify each field in a received frame and then perform the
corresponding decoding operation.

JPEG decoding

As we can see in Figure 3.21, a JPEG decoder is made up of a number of
stages which are simply the corresponding decoder sections of those used in
the encoder. Hence the time to carry out the decoding function is similar to
that used to perform the encoding.

On receipt of the encoded bitstream the frame decoder first identifies
the control information and tables within the various headers. It then loads
the contents of each table into the related table and passes the control infor-
mation to the image builder. It then starts to pass the compressed bitstream
to the Huffman decoder which carries out the corresponding decompression
operation using either the default or the preloaded table of codewords. The
two decompressed streams containing the DC and AC coefficients of each
block are then passed to the differential and run-length decoders respec-
tively. The resulting matrix of values is then dequantized using either the
default or the preloaded values in the quantization table.

JPEG decoder

Encoded
bitshream

L ) AT

Figure 3.21 JPEG decoder schematic.
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Fach resulting block of 8 x 8 spatial frequency coefficients is passed in
turn to the inverse DCT which transforms them back into their spatial form
using the expression:

(2x+1)in (2y+ )jm
cos

16 16

1 707
Plx 3] = 7 20 Eocu) C(5) FTi, 4] cos

where C(i) and C(j) = 1/¥2 for 4, j=0
= 1 for all other values of and j.

The image builder then reconstructs the original image from these
blocks using the control information passed to it by the frame decoder.
Althcugh the JPEG standard is relatively complicated owing to the number of
encoding/decoding stages associated with it, compression ratios in excess of
20:1 can be obtained while still retaining a good quality output image/ pic-
ture. This level of compression, however, applies to pictures whose content is
relatively simple — that is, have relatively few color transitions — and, for more
compiicated pictures, compression ratios nearer to 10:1 are more common.
These figures, however, assume each pixel location has three planes associ-
ated with it - R/G/B or ¥/C,/C, - and hence if a CLUT is used, then both
figures can be multiplied by a factor of 3. Nevertheless, even with a compres-
sion ratio of 10:1, the amount of memory required with the various types of
display tabulated in Table 2.1 is reduced to a range of from 30 kbytes through
to 240 kbytes. More importantly, the time delay incurred in accessing these
images is reduced by a factor of 10.

Finally, as with the GIE it is also possible to encode and rebuild the image
in a progressive way by first sending an outline of the image and then pro-
gressively adding more detail to it. This can be achieved in the following ways:

@ progressive mode: in this mode, first the DC and low-frequency
coefficients of each block are sent and then the higher-frequency
coefficients;

B hierarchial mode: in this mode, the total image is first sent using a low
resolution - for example 320 %240 — then at a higher resolution such as
640x 480,

In this chapter we have described a selection of the compression algorithms
that are used for the compression of text and images. In general, compres-
sion is applied to both media types in order to reduce the time taken to
transfer the source information over a network. This is done either to reduce
the cost of the network connection or, in interactive applications, to reduce
the response time to a request for the source information.
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The basic techniques associated with all compression algorithms were
first identified and described. These were classified as being either entropy
encoding algorithms or source encoding. Entropy encoding exploits how the
source information is represented and we described two examples: run-
length encoding and statistical encoding.

Run-length encoding is used when the source information contains long
strings of the same symbol such as a character, a bit, or a byte. Instead of
sending the source information in the form of independent codewords, it is
sent by simply indicating the particular symbol in each string together with
an indication of the number of symbols in the string,

Statistical encoding exploits the fact that not all symbols in the source
information occur with equal probability. Hence, instead of encoding all the
symbols with fixed-length codewords, variable-length codewords are used with
the shortest ones used to encode those symbols that occur most frequently.

In contrast, source enceding exploits a particular property of the source
information in order to produce an alternative form of representation that is
either a compressed version of the original form or is more amenable to the
application of compression. Two examples were described: differential
encoding and transform encoding.

Differential encoding is used when the amplitude of the values that make
up the source information cover a large range but the difference between suc-
cessive values is relatively small. Instead of using a set of relatively large
codewords to represent the actual amplitude of each value, a set of smaller code-
words is used, each of which indicates only the difference in amplitude between
the current value being encoded and the immediately preceding value.

As the name implies, transform enceding involves transforming the
source information into an alternative form of representation that lends itself
more readily to the application of compression. The example that we
described was the discrete cosine transform (DCT). This is used for image
compression and transforms the matrix of pixel values that represent the
image into a matrix of spatial frequency components which, in turn, lends
itself more readily to the application of compression.

In terms of text compression, when the compressed source information
is decompressed by the receiver, there is normally no loss of information. The
compression algorithms that have this property are known as lossless and we
described a number of such algorithms. These included both static and
dynamic Huffman coding, arithmetic coding, and the LZW coding algo-
rithm. The two Huffman algorithms and arithmetic coding are based on the
relative frequency of occurrence of single characters in the source informa-
tion and the LZW algorithm strings of characters.

In terms of image compression, we described a number of the algorithms
that are used for the compression of graphical images, digitized documents,
and digitized pictures. For use with graphical images we described the GIF
and TIFF standards, for digitized documents two modified Huffman coding
algorithms, and for digitized pictures the JPEG algorithm. All the algorithms
that were described are part of international standards which, in addition to
the compression algorithm, also define the format of the compressed infor-
mation when it is being stored or transferred across a network.
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: Exercises

Section 3.2

3.1

32

33

34

3.5

Explain the meaning of the following terms
relating to compression:

{i) source encoders and destination decoders,
(i) lossless and lossy compression,

(iif) entropy enceding,

(iv) source encoding.

Explain the meaning of the following terms
relating to statistical encoding:

(i) run-length encoding,

(i) statistical encoding.

Explain the meaning of the following terms
relating to statistical encoding:

(i) prefix property,

(i) entropy,

(iii}) Shannon’s formula,

(iv) coding efficiency.

Explain the meaning of the following terms
relating to source encoding:

(i) differential encoding,

(i) transform encoding

With the aid of diagrams, explain in a qualita-
tive way the meaning of the following terms
relating to transform encoding:

(i) spatial frequency,

(i) horizontal and vertical frequency com-
ponents,

discrete cosine transform (DCT).

(iii)

Section 3.3

3.6

3.7

38

Explain the meaning of the following terms
relating to text compression algorithms:

(1) stadc coding,

(i1) dynamic/adaptive coding.

With the aid of an example, describe the rules
that are followed to construct the Huffman
code tree for a transmitted character set,

Messages comprising seven different charac-
ters, A through G, are to be transmitted over a

39

3.10

3.11

data link. Analysis has shown that the relauve
frequency of occurrence of each character is:

A010, B025 C0.05 D032, EO0.01,

F0.07, G0.2

(i) Derive the entropy of the messages.

(i1} Use static Huffman coding to derive a
suitable set of codewords.

Derive the average number of bits per
codeword for your codeword set to trans-
mit a message and compare this with
both the fixed-length binary and ASCII
codewords.

(iii)

{i} State the prefix property of Huffman
codes and hence show that your code-
word set derived in Exercise 3.8 satisfiect
this.

(ii) Derive a flowchart for an algorithm to

decode a received bit string encoded

using your codeword set.

Give an example of the decoding opera-

tion assuming the received bit string

comprises a mix of the seven characters.

i)

The following character string is to be trans-
mitted using Huffman coding:

ABACADABACADABACABAB

(1) Derive the Huffman code tree.

(i) Determine the savings in transmission
bandwidth over norma! ASCII and
binary coding.

With reference to the example shown in

Figure 3.6 relating to dynamic Huffman coding:

(iY Write down the actual transmitted bit
pattern corresponding to the character
string:

“This is”
assuming ASCII coding is being used.
(ii) Deduce the extensions to the existing

Huffman tree if the next word transmit-
ted is “the”.
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3.14

3.15

3.16

Assuming the character set and associate
probability assignments given in Figure 3.7,
derive the codeword value for the character
string new!. Assumning this is recieved by the
destination, explain how the decoder deter-
mines the original string from the received
codeword value.

Explain the principle of operation of the LZ
compression algorithm. Hence assuming a dic-
tionary of 16 000 words and an average word
length of 5 bits, derive the average compres-
sion ratio that is achieved relative to using 7-bit
ASCII codewords.

Explain the principle of operation of the LZW
compression algorithm and how this is differ-
ent from the LZ algorithm.

Assume the contents of a file that consists of
256 different words - each composed of
alphanumeric characters from the basic ASCII
character set — is to be sent over a network
using the LZW algorithm. If the file contents
start with the string:

This is easy as it is easy ...
show the entries in the dictionary of the
encoder up to this point and the string of
codewords that are sent. Also show how the

receiver builds up its own dictionary and deter-
mines the original file contents from this.

Assume the same message as in Exercise 3.15
but with the number of different words much
larger and unknown. How can the algorithm
be changed to accommodate this?
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3.18

Explain the basic mode of operation of GIF.
Include in your explanation the size of the
color table used, how each pixel value is sent,
and how the receiver knows the image parame-
ters used by this source.

In relation 1o GIF, explain how the LZW coding
algorithm can be applied 1o the (compressed)
image data. Include in your explanation how
compression is achieved and how the receiver
interprets the compressed information.
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3.22
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With the aid of a diagram, describe the inter-
laced mode of operation of GIF. Include the
potential applications of this mode and how
the receiver knows it is being used.

Describe the principles of TIFF and its applica-
tion domains.

Explain the meaning of the following terms
relating to facsimile machines:

(i} termination codes,

(ii) make-up codes,

(iii) overscanning,

{iv) the EOL code and its uses.

Discriminate between a one-dimensional coding
scheme and a two-dimensional (MMR) scheme.

Given a scanned line of pels, assuming a
one-dimensional coding scheme, deduce an

algorithm
(i) to determine the transmitted codewords,.
and

(i) to decode the received string of code-
words. Use the Huffman tables in Fig. 3.11
as a guide.

With the aid of pel patterns, assuming an MMR
coding scheme, explain the meaning of the fol-
lowing terms:

(i) pass mode,

(ii)  vertical mode,

(ii1) horizontal mode. Hence with the aid of
the code table given in Table 3.1, deduce
an algorithm to perform the encoding
operation.

With the aid of a diagram, identify the five
main stages associated with the baseline mode
of operation of JPEG and give a brief descrip-
tion of the role of each stage.

With the aid of a diagram, explain how the indi-
vidual 8 x8 blocks of pixel values are derived by
the image and block preparation stage for each
of the following source image forms:

(i} monochrome/CLUT,

(ii)) RGB,

(i) ¥, G, C.

In relation to the ¥, G, C format, show the
order in which the blocks are output.
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With the aid of a diagram, explain the mean-

ing of the following terms relating to the DCT

algorithm:

(i} DC coefficient,

(ii) horizontal and vertical spatial frequency
coefficients.

Hence by considering a typical image of 1024 x
768 pixels displayed on a 17 inch (432 mm)
screen, explain where the savings in bandwidth
arise with JPEG.

State the characteristic of the eye that is
exploited in the quantization phase of the
JPEG algorithm. Hence assuming the set of DC
coefficients and threshold values shown in
Figure 3.17, explain how the set of quantiza-
tion coefficients are derived,

Use a range of DCT coefficients and a selected
quantization threshold to derive how the maxi-
mum quantization error is determined by the
choice of threshold value.

State the characteristics of the values in the
quantized coefficient matrix that are exploited
during the entropy encoding stage. Why is vec-
toring using a zig-zag scan applied to the matrix?

Explain why differential encoding is used for
the compression of the DG coefficients in suc-
cessive blocks. By means of an example set of
coefficients, estimate the savings in bandwidth
that are achieved.

Using the set of coding categories listed in
Figure 3.19(a), determine the encoded version
of the following string of DC coefficients.

16, 15, 16, 14, 12, ...

3.33

3.24

3.35

3.36

3.37

Describe how the 63 quantized AC coefficients
in a vector are encoded using run-length encod-
ing. Hence derive the encoded form of the
following vector of quantized AC coefficients:

6,7,00073,-1,00,..,0.

Describe how the differential-encoded DC
coefficients from a string of successive blocks
are set using Huffman encoding. Hence assum-
ing the default Huffman codewords shown in
Figure 3.19(b), derive the encoded bitstream
for the set of differential encoded DC coeffi-
cients you derived in Exercise $.32.

Describe how the set of run-length encoded AC
coefficients for a block are sent using Huffman
encoding. Hence assuming the set of default
Huffman codewords listed in Table 3.2, derive
the Huffman-encoded bitstream for the set of
run-length encoded coefficients you derived in
Exercise 3.33. How is the end of the set of
encoded coefficients for a block determined?

All the information relating to a compressed
image/picture generated by the various stages
in the JPEG encoder is encapsulated within a
single frame in such a way that the decoder can
identify the individual fields that are present.
Show the structure of a frame in a diagram and
describe the role of the main fields in each of
the headers that are used.

With the aid of Figure 3.21, explain how the
various parts of the encoded frame identified
in Exercise 3.36 are used to recreate the origi-
nal image.

Identify the wwo alternate ways that can be
used to recreate an image in a progressive way.



